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An improvement in the practical aspects of formamidine
synthesis has resulted in the discovery of a class of
compounds which produce organogels in protic solvents,
presumably through intermolecular hydrogen bonding and
p–p stacking interactions.

Formamidines have claimed the interest of many research groups
for their biological activity and pharmacological potential.1

Formamide acetals 1 have been widely used in the synthesis of
amidines from amines and amides, providing 2 under mild
conditions in high yields (Scheme 1).2 Recently, we reported that
formamidine urea compounds (3) undergo exchange reactions of
their imine fragments with primary nitrogen nucleophiles, giving
derivatives of varying electrophilicity determined primarily by the
electronic-donating power of the substituents.1 We anticipated that
this behavior could be extended to the simple N,N-dimethyl
formamidines 2, in order to access a wider array of simple
formamidines 4. Several reports in the literature describe the
exchange of the dimethylamine fragment of 2 with nucleophiles
such as aliphatic3 and aromatic4 amines, hydrazines,5 and
hydroxylamines.6 Most of these reactions are carried out in
protic solvents (e.g. MeOH, EtOH) at elevated temperatures, but
the scope and limitations of this important exchange process have
not yet been explored. Here we describe the use of polar nonprotic
solvents, allowing for the convenient isolation of pure compounds
by precipitation and therefore access to a much wider array of
structures than was previously possible. In the course of our efforts
to take advantage of this development, a molecule displaying
highly efficient properties as a gelator of organic solvents was
discovered.

Our interest in the chemistry of the formamidine nucleus1,7

prompted us to explore first the conversion of dimethylformami-
dine 58 into 6 by amine exchange (Scheme 1). The best yields were

achieved in methanol with the use of 3 equivalents of nucleophile,
but reactions in nonprotic polar solvents such as acetonitrile were
found to be fairly effective with 1.5 equivalents of amine and the
addition of organic base (Et3N, iPr2NEt, DMAP).9 A broader
study of the general method was then performed with an eye
toward the preparation of formamidines of tunable electrophilicity1

at the central carbon.
A preliminary survey of nucleophiles demonstrated that a two-

step exchange process followed a predictable set of rules. Thus, the
formamide acetal 1 readily accepted primary amines, amides,
hydroxylamines, hydrazides, and hydrazines. However, the second
step, displacement of the dimethylamine fragment from formami-
dines 7, was blocked when the imine component was strongly
electron donating (derived from hydrazines, hydrazides, or
hydroxylamines), a trend also observed with formamidine ureas.1

Furthermore, with all reactive examples of 7, the entering
nucleophile in the second step must be more nucleophilic than
an amide. Aside from these limitations, a modular exchange route
to diverse mixed formamidines 8 was found to be straightforward,
as shown in Scheme 2.9

When highly polar amines were used in protic solvents, the
isolation and purification of the final amidine products was tedious,
requiring the use of HPLC or complex crystallization procedures.
However, base catalysis in acetonitrile allowed analytically pure
compounds to be obtained as precipitates,10 the modest nature of
the yields being more than outweighed by the convenient nature of
the procedure. Fig. 1 shows a set of formamidines made in this
fashion. All products were isolated as pure white solids by
filtration.

As the biological activity of formamidines is likely to be
influenced by their rates of hydrolysis,11 we examined the stabilities
of simple model compounds representing combinations of amine–
amine, amine–hydrazide, amide–hydrazide, and amide-amine
fragments, in aqueous methanol solutions at three different pH
values.9 These compounds were found to be far more stable toward
hydrolysis than formamidine ureas,1 displaying half lives from 1 to
more than 200 h. Both acid- and base-mediated hydrolysis

{ Electronic supplementary information (ESI) available: Experimental
details, expanded discussion and compound characterization. See http://
www.rsc.org/suppdata/cc/b4/b406704e/

Scheme 1 Exchange reactions in the preparation of formamidines and formamidine ureas.D
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mechanisms were revealed, the former being favored for especially
electron-rich systems.9

Two of the above structures were also found to be efficient
gelators of protic organic solvents. Organogels are supramolecular
materials of current interest;12 to the best of our knowledge, we
report here the first example of an organogel formed by a
formamidine. The formamidine unit should be a potent building
block in this regard, since linear arrays of hydrogen bonds are often
crucial to the formation of the filamentous structures that comprise
organogel networks.

Compounds 11 and 17 formed gels in alcohol solvents, with 11
being the more effective in terms of stability and efficiency (mass of
gelator per unit volume of gel). A typical procedure involved
heating a sample of 11 in MeOH, EtOH, 2-propanol, 1- propanol,

or 2,2,2-trifluoroethanol near the boiling point of the solvent, and
then cooling the solution to 6 uC.13 The gel made from 11 in
methanol could be dissolved by heating in extra solvent and then
reformed upon cooling; this cycle could be repeated several times
without affecting the gelation process. Complete gel formation
using as little as 0.3 wt% of 11 in methanol was observed within 72 h
and was confirmed by the inverted test-tube method (Fig. 2),
although a turbid solution formed within minutes upon cooling.14

When the concentration of gelator was w0.7 wt%, heating
accomplished the physical dispersion of the gel rather than its
solubilization.

The gels formed by 11 were stable at room temperature for more
than two months when stored in sealed glass vials. While requiring
alcohol solvents to form, they remained immiscible and stable in

Scheme 2 General exchange process for the synthesis of formamidines from formamide acetals.

Fig. 1 Compounds obtained by the two-step exchange process shown in Scheme 2, using acetonitrile as solvent and DMAP as catalytic base. The boxed
fragment was introduced in the first step; isolated yields of analytically pure material are given in parentheses.

Fig. 2 (A) Organogel formed by 4 mg of 11 in 2 mL of MeOH and 0.2 mL of chlorobenzene. (B) Network of interactions proposed to promote gelation.
(C) Negative stain TEM images of organogels formed from 11 (panel 1, 0.3 wt% in 10:1 MeOH:chlorobenzene; panel 2, 0.4 wt% in 1.2:1 DMA:H2O); (scale
bar 1 mm).
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neutral aqueous solution for at least 4–5 days, after which time the
consistency of the gel decreased.16 The fibrous nature of the gel
material was demonstrated by transmission electron microscopy
(Fig. 2). The gels made in protic solvents retain their form upon
heating until temperatures are reached at which the trapped solvent
boils, so we were unable to characterize gel-to-sol phase transition
temperatures by differential scanning calorimetry.

No gelation was observed when the hydrazide and amide
fragments (Ac–Phe–NHNH2 and Bz–Gly–Phe–NH2, respectively)
of 11 were dissolved individually or together. FT–IR of the gel
showed N–H stretching bands in the 2800–3300 cm21 range and
CLO bands at 1631 and 1540 cm21, characteristic of strong
H-bonding interactions. A new weak signal at approximately
1760 cm21 was also observed, consistent with an antiparallelb-sheet
arrangement (although this feature may also arise from a disordered
structure).15 The CD spectra of 11 likewise changed dramatically in
going from the solution phase at elevated temperature (little or no
ellipticity) to the gel phase (substantial signal) upon cooling.9 The
proposed intermolecular hydrogen-bonding pattern of 11 is shown
in Fig. 2. In addition to hydrogen bonding, for which the
formamidine function is crucial, dipolar interactions and p–p
stacking may also play significant roles in promoting the efficient
organization of 11 into aggregates and fibers.

In conclusion, the discovery of a simple procedure for the
assembly of formamidine components has led to the synthesis of a
range of structures showing good stability toward aqueous
hydrolysis and potent hydrogen bonding activity in protic organic
solvents and aqueous/organic mixtures. In addition to their
demonstrated properties as organogel components, formamidines
should engage in facile interactions with proteins. Their properties
as biologically active agents are under current investigation in our
laboratory.
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